2 00 5 X = M for Symmetric Powers

نویسنده

  • MARK SHIMOZONO
چکیده

The X = M conjecture of Hatayama et al. asserts the equality between the one-dimensional configuration sum X expressed as the generating function of crystal paths with energy statistics and the fermionic formula M for all affine Kac–Moody algebra. In this paper we prove the X = M conjecture for tensor products of Kirillov–Reshetikhin crystals B1,s associated to symmetric powers for all nonexceptional affine algebras.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second symmetric powers of chain complexes

We investigate Buchbaum and Eisenbud's construction of the second symmetric power $s_R(X)$ of a chain complex $X$ of modules over a commutative ring $R$. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following vers...

متن کامل

. R T ] 1 5 M ar 2 00 5 COMBINATORIAL OPERATORS FOR KRONECKER POWERS OF REPRESENTATIONS OF

We present combinatorial operators for the expansion of the Kronecker product of irreducible representations of the symmetric group Sn. These combinatorial operators are defined in the ring of symmetric functions and act on the Schur functions basis. This leads to a combinatorial description of the Kronecker powers of the irreducible representations indexed with the partition (n − 1, 1) which s...

متن کامل

The inverse eigenvalue problem for symmetric anti-bidiagonal matrices

X iv :m at h/ 05 05 09 5v 1 [ m at h. R A ] 5 M ay 2 00 5 The inverse eigenvalue problem for symmetric anti-bidiagonal matrices Olga Holtz Department of Mathematics University of California Berkeley, California 94720 USA March 6, 2008

متن کامل

Stein's Method and Plancherel Measure of the Symmetric Group Running Head: Stein's Method and Plancherel Measure

X iv :m at h/ 03 05 42 3v 3 [ m at h. R T ] 1 1 N ov 2 00 3 Stein’s Method and Plancherel Measure of the Symmetric Group Running head: Stein’s Method and Plancherel Measure By Jason Fulman University of Pittsburgh Department of Mathematics 301 Thackeray Hall Pittsburgh, PA 15260 Email: [email protected] Abstract: We initiate a Stein’s method approach to the study of the Plancherel measure of...

متن کامل

m at h . A G ] 1 S ep 2 00 1 THE T 1 - LIFTING THEOREM IN POSITIVE CHARACTERISTIC STEFAN

Replacing symmetric powers by divided powers and working over Witt vectors instead of ground fields, I generalize Kawamata’s T -lifting theorem to characteristic p > 0. Combined with the work of Deligne–Illusie on degeneration of the Hodge–de Rham spectral sequences, this gives unobstructedness for certain Calabi–Yau varieties with free crystalline cohomology modules.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008